Title of article :
A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity
Author/Authors :
Demkowicz، نويسنده , , Leszek and Gopalakrishnan، نويسنده , , Jay and Niemi، نويسنده , , Antti H. Niemi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
32
From page :
396
To page :
427
Abstract :
We continue our theoretical and numerical study on the Discontinuous Petrov–Galerkin method with optimal test functions in context of 1D and 2D convection-dominated diffusion problems and hp-adaptivity. With a proper choice of the norm for the test space, we prove robustness (uniform stability with respect to the diffusion parameter) and mesh-independence of the energy norm of the FE error for the 1D problem. With hp-adaptivity and a proper scaling of the norms for the test functions, we establish new limits for solving convection-dominated diffusion problems numerically: ϵ = 10 − 11 for 1D and ϵ = 10 − 7 for 2D problems. The adaptive process is fully automatic and starts with a mesh consisting of few elements only.
Keywords :
Convection-dominated diffusion , Discontinuous Petrov–Galerkin , hp-Adaptivity
Journal title :
Applied Numerical Mathematics
Serial Year :
2012
Journal title :
Applied Numerical Mathematics
Record number :
1529817
Link To Document :
بازگشت