Title of article :
Numerical stability of explicit Runge–Kutta finite-difference schemes for the nonlinear Schrödinger equation
Author/Authors :
Caplan، نويسنده , , R.M. and Carretero-Gonzلlez، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Linearized numerical stability bounds for solving the nonlinear time-dependent Schrödinger equation (NLSE) using explicit finite-differencing are shown. The bounds are computed for the fourth-order Runge–Kutta scheme in time and both second-order and fourth-order central differencing in space. Results are given for Dirichlet, modulus-squared Dirichlet, Laplacian-zero, and periodic boundary conditions for one, two, and three dimensions. Our approach is to use standard Runge–Kutta linear stability theory, treating the nonlinearity of the NLSE as a constant. The required bounds on the eigenvalues of the scheme matrices are found analytically when possible, and otherwise estimated using the Gershgorin circle theorem.
Keywords :
numerical stability , Explicit finite-difference schemes , Nonlinear Schrِdinger equation
Journal title :
Applied Numerical Mathematics
Journal title :
Applied Numerical Mathematics