Title of article :
Variance reduction method based on sensitivity derivatives, Part 2
Author/Authors :
Jimenez، نويسنده , , Edwin and Liu، نويسنده , , Yaning and Hussaini، نويسنده , , M. Yousuff، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
151
To page :
159
Abstract :
A previous paper introduced a sampling method (SDES) based on sensitivity derivatives to construct statistical moment estimates that are more efficient than standard Monte Carlo estimates. In this paper we sharpen previous theoretical results and introduce a criterion to guarantee that the variance of SDES estimates is smaller than the variance of the Monte Carlo estimate. Previous numerical experiments demonstrated, and here we prove analytically, that the first-order SDES and Monte Carlo estimates converge at the same rate. We illustrate the efficiency of the SDES method of order n, where n is fixed, to estimate statistical moments with a Korteweg–de Vries equation with uncertain initial conditions.
Keywords :
Monte Carlo Method , uncertainty quantification , Sensitivity derivatives , variance reduction , Korteweg–de Vries equation
Journal title :
Applied Numerical Mathematics
Serial Year :
2013
Journal title :
Applied Numerical Mathematics
Record number :
1529867
Link To Document :
بازگشت