Title of article :
Otterʹs Method and the Homology of Homeomorphically Irreduciblek-Trees
Author/Authors :
Hanlon، نويسنده , , Phil، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Abstract :
Let T(k)ndenote the collection of trees withnk+2 labelled leaves which have the property that every internal node has degreemk+2 for somem⩾1. Partially order the elements of T(k)nby definingT⩽SifTcan be obtained fromSby contracting some collection of internal edges. Then T(k)nis a Cohen–Macaulay poset with an action ofSnk+2. We show that the top homology of T(k)nas anSnk+2-module is[formula]whereLie(k)Nis the action ofSNon the 1N-homogeneous piece of the free Liek-algebra. This generalizes the result obtained by Sarah Whitehouse [W] in the casek=1.
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A