Title of article :
Note on a Combinatorial Application of Alexander Duality
Author/Authors :
Bjِrner، نويسنده , , Anders and Butler، نويسنده , , Lynne M. and Matveev، نويسنده , , Andrey O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Abstract :
The Möbius number of a finite partially ordered set equals (up to sign) the difference between the number of even and odd edge covers of its incomparability graph. We use Alexander duality and the nerve lemma of algebraic topology to obtain a stronger result. It relates the homology of a finite simplicial complexΔthat is not a simplex to the cohomology of the complexΓof nonempty sets of minimal non-faces that do not cover the vertex set ofΔ
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A