Title of article :
Generalized Rank Functions and an Entropy Argument
Author/Authors :
Kahn، نويسنده , , Jeff and Lawrenz، نويسنده , , Alexander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
A rank function is a function f: 2[d]→N such that f(∅)=0 and f(A)⩽ f(A∪x)⩽f(A)+1 for all A⊆[d], x∈[d]\A. Athanasiadis conjectured an upper bound on the number of rank functions on 2[d]. We prove this conjecture and generalize it to functions with bounded jumps.
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A