Title of article :
Walks on Directed Graphs and Matrix Polynomials
Author/Authors :
Méndez، نويسنده , , Miguel A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
13
From page :
531
To page :
543
Abstract :
We give a matrix generalization of the family of exponential polynomials in one variable φk(x). Our generalization consists of a matrix of polynomials Φk(X)=(Φ(k)i, j(X))ni, j=1 depending on a matrix of variables X=(xi, j)ni, j=1. We prove some identities of the matrix exponential polynomials which generalize classical identities of the ordinary exponential polynomials. We also introduce matrix generalizations of the decreasing factorial (x)k=x(x−1)(x−2)…(x−k+1), the increasing factorial (x)(k)=x(x+1)(x+2)…(x+k−1), and the Laguerre polynomials. These polynomials have interesting combinatorial interpretations in terms of different kinds of walks on directed graphs.
Keywords :
Walks , digraphs , polynomials of binomial type , Umbral calculus
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2000
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530513
Link To Document :
بازگشت