Title of article :
The Existence of a Bush-type Hadamard Matrix of Order 36 and Two New Infinite Classes of Symmetric Designs
Author/Authors :
Janko، نويسنده , , Zvonimir، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
5
From page :
360
To page :
364
Abstract :
A nonsymmetric Bush-type Hadamard matrix of order 36 is constructed which leads to two new infinite classes of symmetric designs with parameters:v=36(25m+25m−1+…+25+1), k=15(25)m, λ=6(25)m,andv=36(49m+49m−1+…+49+1), k=21(49)m, λ=12(49)m,where m is any positive integer.
Keywords :
Symmetric design , Bush-type Hadamard matrix , twin design , Siamese twin design , balanced generalized weighing matrix
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530614
Link To Document :
بازگشت