Title of article :
Some Observations on Dysonʹs New Symmetries of Partitions
Author/Authors :
Berkovich، نويسنده , , Alexander and Garvan، نويسنده , , Frank G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
We utilize Dysonʹ concept of the adjoint of a partition to derive an infinite family of new polynomial analogs of Eulerʹs Pentagonal Number Theorem. We streamline Dysonʹs bijection relating partitions with crank ⩽k and those with k in the Rank-Set of partitions. Also, we extend Dysonʹs adjoint of a partition to MacMahonʹs “modular” partitions with modulus 2. This way we find a new combinatorial proof of Gaussʹs famous identity. We give a direct combinatorial proof that for n>1 the partitions of n with crank k are equinumerous with partitions of n with crank −k.
Keywords :
Eulerיs pentagonal number theorem , Dysonיs rank , q-Series , Congruences , partitions , polynomial analogs. , Cranks , modular partitions
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A