Title of article :
A Shorter, Simpler, Stronger Proof of the Meshalkin–Hochberg–Hirsch Bounds on Componentwise Antichains
Author/Authors :
Beck، نويسنده , , Matthias and Zaslavsky، نويسنده , , Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Meshalkinʹs theorem states that a class of ordered p-partitions of an n-set has at most max(na1,…,ap) members if for each k the kth parts form an antichain. We give a new proof of this and the corresponding LYM inequality due to Hochberg and Hirsch, which is simpler and more general than previous proofs. It extends to a common generalization of Meshalkinʹs theorem and Erdősʹs theorem about r-chain-free set families.
Keywords :
Meshalkinיs theorem , Antichain , r-family , r-chain-free , composition of a set. , Spernerיs theorem , LYM inequality
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A