Title of article :
The Uniqueness of the 1-System of Q−(7, q), q Odd
Author/Authors :
Luyckx، نويسنده , , D. and Thas، نويسنده , , J.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
15
From page :
253
To page :
267
Abstract :
It is known that every m-system of the elliptic polar space Q−(2n+1, q) is an SPG regulus of the ambient space PG(2n+1, q) of Q−(2n+1, q). From the proof of this result, applied to 1-systems of Q−(7, q), it follows that for q odd, each plane of Q−(7, q) either contains a line of the 1-system or an irreducible conic of points on lines of the 1-system. This observation is used to show that Q−(7, q) has a unique 1-system if q is odd.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2002
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530709
Link To Document :
بازگشت