Title of article :
A Family of Perfect Factorisations of Complete Bipartite Graphs
Author/Authors :
Bryant، نويسنده , , Darryn and Maenhaut، نويسنده , , Barbara M. and Wanless، نويسنده , , Ian M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
15
From page :
328
To page :
342
Abstract :
A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n=p2 for an odd prime p. We construct a family of (p−1)/2 non-isomorphic perfect 1-factorisations of Kn, n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltonian if the permutation defined by any row relative to any other row is a single cycle.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2002
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530712
Link To Document :
بازگشت