Title of article :
Zero-patterns of polynomials and Newton polytopes
Author/Authors :
Lauder، نويسنده , , Alan G.B. Lauder، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
10
To page :
15
Abstract :
We present an upper bound on the number of regions into which affine space or the torus over a field may be partitioned by the vanishing and non-vanishing of a finite collection of multivariate polynomials. The bound is related to the number of lattice points in the Newton polytopes of the polynomials, and is optimal to within a factor depending only on the dimension (assuming suitable inequalities hold amongst the relevant parameters). This refines previous work by different authors.
Keywords :
Multivariate polynomial , Zero-pattern , Newton polytope , Hypersurface , Sign-pattern
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2003
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530770
Link To Document :
بازگشت