Title of article :
Width and dual width of subsets in polynomial association schemes
Author/Authors :
Brouwer، نويسنده , , A.E. and Godsil، نويسنده , , C.D. and Koolen، نويسنده , , J.H. and Martin، نويسنده , , W.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
The width of a subset C of the vertices of a distance-regular graph is the maximum distance which occurs between elements of C. Dually, the dual width of a subset in a cometric association scheme is the index of the “last” eigenspace in the Q-polynomial ordering to which the characteristic vector of C is not orthogonal. Elementary bounds are derived on these two new parameters. We show that any subset of minimal width is a completely regular code and that any subset of minimal dual width induces a cometric association scheme in the original. A variety of examples and applications are considered.
Keywords :
Distance-regular graph , Near polygon , Association scheme
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A