Title of article :
Symmetric iterated Betti numbers
Author/Authors :
Babson، نويسنده , , Eric and Novik، نويسنده , , Isabella and Thomas، نويسنده , , Rekha، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
22
From page :
233
To page :
254
Abstract :
We define a set of invariants of a homogeneous ideal I in a polynomial ring called the symmetric iterated Betti numbers of I. We prove that for IΓ, the Stanley–Reisner ideal of a simplicial complex Γ, these numbers are the symmetric counterparts of the exterior iterated Betti numbers of Γ introduced by Duval and Rose, and that the extremal Betti numbers of IΓ are precisely the extremal (symmetric or exterior) iterated Betti numbers of Γ. We show that the symmetric iterated Betti numbers of an ideal I coincide with those of a particular reverse lexicographic generic initial ideal Gin(I) of I, and interpret these invariants in terms of the associated primes and standard pairs of Gin(I). We close with results and conjectures about the relationship between symmetric and exterior iterated Betti numbers of a simplicial complex.
Keywords :
Algebraic shifting , Generic initial ideals , Extremal Betti numbers , Standard pairs , Local cohomology
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530874
Link To Document :
بازگشت