Title of article :
Excluded permutation matrices and the Stanley–Wilf conjecture
Author/Authors :
Marcus، نويسنده , , Adam and Tardos، نويسنده , , Gلbor، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
8
From page :
153
To page :
160
Abstract :
This paper examines the extremal problem of how many 1-entries an n×n 0–1 matrix can have that avoids a certain fixed submatrix P. For any permutation matrix P we prove a linear bound, settling a conjecture of Zoltán Füredi and Péter Hajnal (Discrete Math. 103(1992) 233). Due to the work of Martin Klazar (D. Krob, A.A. Mikhalev, A.V. Mikhalev (Eds.), Formal Power Series and Algebraics Combinatorics, Springer, Berlin, 2000, pp. 250–255), this also settles the conjecture of Stanley and Wilf on the number of n-permutations avoiding a fixed permutation and a related conjecture of Alon and Friedgut (J. Combin Theory Ser A 89(2000) 133).
Keywords :
extremal problems , Stanley-Wilf conjecture , Forbidden submatrices , Pattern avoidance
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530913
Link To Document :
بازگشت