Title of article :
On Mathonʹs construction of maximal arcs in Desarguesian planes II
Author/Authors :
Fiedler، نويسنده , , Frank and Leung، نويسنده , , Ka Hin and Xiang، نويسنده , , Qing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
24
From page :
99
To page :
122
Abstract :
In a recent paper, Mathon (J. Combin. Theory (A) 97 (2002) 353) gives a new construction of maximal arcs which generalizes the construction of Denniston. In relation to this construction, Mathon asks the question of determining the largest degree of a non-Denniston maximal arc arising from his new construction. In this paper, we give a nearly complete answer to this problem. Specifically, we prove that when m⩾5 and m≠9, the largest d of a non-Denniston maximal arc of degree 2d in PG(2,2m) generated by a {p,1}-map is (m2+1). This confirms our conjecture in (Fiedler et al. (Adv. Geom. (2003) (Suppl.) S119)). For {p,q}-maps, we prove that if m⩾7 and m≠9, then the largest d of a non-Denniston maximal arc of degree 2d in PG(2,2m) generated by a {p,q}-map is either m2+1 or m2+2.
Keywords :
ARC , Linearized polynomial , Maximal arc , Moore determinant , quadratic form
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530929
Link To Document :
بازگشت