Title of article :
Essential covers of the cube by hyperplanes
Author/Authors :
Linial، نويسنده , , Nathan and Radhakrishnan، نويسنده , , Jaikumar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
8
From page :
331
To page :
338
Abstract :
A set L of linear polynomials in variables X 1 , X 2 , … , X n with real coefficients is said to be an essential cover of the cube { 0 , 1 } n if(E1) ch v ∈ { 0 , 1 } n , there is a p ∈ L such that p ( v ) = 0 ; per subset of L satisfies (E1), that is, for every p ∈ L , there is a v ∈ { 0 , 1 } n such that p alone takes the value 0 on v; variable appears (in some monomial with non-zero coefficient) in some polynomial of L. ( n ) be the size of the smallest essential cover of { 0 , 1 } n . In the present note we show that 1 2 ( 4 n + 1 + 1 ) ⩽ e ( n ) ⩽ n 2 + 1 .
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2005
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530962
Link To Document :
بازگشت