Title of article :
On the asymptotic number of non-equivalent q-ary linear codes
Author/Authors :
Hou، نويسنده , , Xiang-Dong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Let M n , q ⊂ GL ( n , F q ) be the group of monomial matrices, i.e., the group generated by all permutation matrices and diagonal matrices in GL ( n , F q ) . The group M n , q acts on the set V ( F q n ) of all subspaces of F q n . The number of orbits of this action, denoted by N n , q , is the number of non-equivalent linear codes in F q n . It was conjectured by Lax that N n , q ∼ | V ( F q n ) | n ! ( q - 1 ) n - 1 as n → ∞ . We confirm this conjecture in this paper.
Keywords :
The symmetric group , Invariant subspace , q-Ary linear codes , Asymptotic , wreath product
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A