Title of article :
On Radoʹs Boundedness Conjecture
Author/Authors :
Fox، نويسنده , , Jacob and Kleitman، نويسنده , , Daniel J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
17
From page :
84
To page :
100
Abstract :
We prove that Radoʹs Boundedness Conjecture from Richard Radoʹs 1933 famous dissertation Studien zur Kombinatorik is true if it is true for homogeneous equations. We then prove the first nontrivial case of Radoʹs Boundedness Conjecture: if a 1 , a 2 , and a 3 are integers, and if for every 24-coloring of the positive integers (or even the nonzero rational numbers) there is a monochromatic solution to the equation a 1 x 1 + a 2 x 2 + a 3 x 3 = 0 , then for every finite coloring of the positive integers there is a monochromatic solution to a 1 x 1 + a 2 x 2 + a 3 x 3 = 0 .
Keywords :
Rado , Radoיs Boundedness Conjecture , Partition Regularity
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531038
Link To Document :
بازگشت