Title of article :
Erdős–Ko–Rado for three sets
Author/Authors :
Mubayi، نويسنده , , Dhruv، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Fix integers k ⩾ 3 and n ⩾ 3 k / 2 . Let F be a family of k-sets of an n-element set so that whenever A , B , C ∈ F satisfy | A ∪ B ∪ C | ⩽ 2 k , we have A ∩ B ∩ C ≠ ∅ . We prove that | F | ⩽ n - 1 k - 1 with equality only when ⋂ F ∈ F F ≠ ∅ . This settles a conjecture of Frankl and Füredi [2], who proved the result for n ⩾ k 2 + 3 k .
Keywords :
Erd?s–Ko–Rado , set system , Nontrivial family
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A