Title of article :
Left cells containing a fully commutative element
Author/Authors :
Shi، نويسنده , , Jian-Yi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
10
From page :
556
To page :
565
Abstract :
Let W be a finite or an affine Coxeter group and W c the set of all the fully commutative elements in W . For any left cell L of W containing some fully commutative element, our main result of the paper is to prove that there exists a unique element (say w L ) in L ∩ W c such that any z ∈ L has the form z = xw L with ℓ ( z ) = ℓ ( x ) + ℓ ( w L ) for some x ∈ W . This implies that L is left connected, verifying a conjecture of Lusztig in our case.
Keywords :
Fully commutative elements , Left cells , Coxeter groups
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531061
Link To Document :
بازگشت