Title of article :
A localization inequality for set functions
Author/Authors :
Lovلsz، نويسنده , , Lلszlَ and Saks، نويسنده , , Michael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
10
From page :
726
To page :
735
Abstract :
We prove the following theorem, which is an analog for discrete set functions of a geometric result of Lovász and Simonovits. Given two real-valued set functions f 1 , f 2 defined on the subsets of a finite set S, satisfying ∑ X ⊆ S f i ( X ) ⩾ 0 for i ∈ { 1 , 2 } , there exists a positive multiplicative set function μ over S and two subsets A , B ⊆ S such that for i ∈ { 1 , 2 } μ ( A ) f i ( A ) + μ ( B ) f i ( B ) + μ ( A ∪ B ) f i ( A ∪ B ) + μ ( A ∩ B ) f i ( A ∩ B ) ⩾ 0 . The Ahlswede–Daykin four function theorem can be deduced easily from this.
Keywords :
inequalities , Set functions , Four function theorem , Discrete localization
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531075
Link To Document :
بازگشت