Title of article :
Revlex-initial 0/1-polytopes
Author/Authors :
M. Gillmann، نويسنده , , Rafael and Kaibel، نويسنده , , Volker، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
23
From page :
799
To page :
821
Abstract :
We introduce revlex-initial 0/1-polytopes as the convex hulls of reverse-lexicographically initial subsets of 0/1-vectors. These polytopes are special knapsack-polytopes. It turns out that they have remarkable extremal properties. In particular, we use these polytopes in order to prove that the minimum numbers g nfac ( d , n ) of facets and the minimum average degree g avdeg ( d , n ) of the graph of a d-dimensional 0/1-polytope with n vertices satisfy g nfac ( d , n ) ⩽ 3 d and g avdeg ( d , n ) ⩽ d + 4 . We furthermore show that, despite the sparsity of their graphs, revlex-initial 0/1-polytopes satisfy a conjecture due to Mihail and Vazirani, claiming that the graphs of 0/1-polytopes have edge-expansion at least one.
Keywords :
extremal , f -vector , graph , Edges , edge expansion , Facets , 0/1-polytope , Convex hull computation
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531080
Link To Document :
بازگشت