Title of article :
Sets of permutations that generate the symmetric group pairwise
Author/Authors :
Blackburn، نويسنده , , Simon R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The paper contains proofs of the following results. For all sufficiently large odd integers n, there exists a set of 2 n − 1 permutations that pairwise generate the symmetric group S n . There is no set of 2 n − 1 + 1 permutations having this property. For all sufficiently large integers n with n ≡ 2 mod 4 , there exists a set of 2 n − 2 even permutations that pairwise generate the alternating group A n . There is no set of 2 n − 2 + 1 permutations having this property.
Keywords :
Alternating group , symmetric group , Local lemma , Subgroup covering
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A