Title of article :
On the asymptotic minimum number of monochromatic 3-term arithmetic progressions
Author/Authors :
Parrilo، نويسنده , , Pablo A. and Robertson، نويسنده , , Aaron and Saracino، نويسنده , , Dan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Let V ( n ) be the minimum number of monochromatic 3-term arithmetic progressions in any 2-coloring of { 1 , 2 , … , n } . We show that 1675 32 768 n 2 ( 1 + o ( 1 ) ) ⩽ V ( n ) ⩽ 117 2192 n 2 ( 1 + o ( 1 ) ) . As a consequence, we find that V ( n ) is strictly greater than the corresponding number for Schur triples (which is 1 22 n 2 ( 1 + o ( 1 ) ) ). Additionally, we disprove the conjecture that V ( n ) = 1 16 n 2 ( 1 + o ( 1 ) ) as well as a more general conjecture.
Keywords :
Ramsey Theory , arithmetic progressions , Regular equations
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A