Title of article :
Partitions and sums with inverses in Abelian groups
Author/Authors :
Zelenyuk، نويسنده , , Yevhen Zelenyuk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
331
To page :
339
Abstract :
Let G be an Abelian group and let A = { x ∈ G : 2 x ≠ 0 } be infinite. We construct a partition { A m : m < ω } of A such that whenever ( x n ) n < ω is a one-to-one sequence in A, g ∈ G and m < ω , one has ( g + FSI ( ( x n ) n < ω ) ) ∩ A m ≠ ∅ , where FSI ( ( x n ) n < ω ) = { ∑ n ∈ F ε n F x n : F ∈ P f ( ω )  and  ε n F ∈ { 1 , − 1 }  for all  n ∈ F } and P f ( ω ) is the set of finite nonempty subsets of ω.
Keywords :
Finite sums with inverses , Partition of a group , Absolute resolvability
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2008
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531276
Link To Document :
بازگشت