Title of article :
Simple permutations and algebraic generating functions
Author/Authors :
Brignall، نويسنده , , Robert and Huczynska، نويسنده , , Sophie and Vatter، نويسنده , , Vincent، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
19
From page :
423
To page :
441
Abstract :
A simple permutation is one that never maps a nontrivial contiguous set of indices contiguously. Given a set of permutations that is closed under taking subpermutations and contains only finitely many simple permutations, we provide a framework for enumerating subsets that are restricted by properties belonging to a finite “query-complete set.” Such properties include being even, being an alternating permutation, and avoiding a given generalised (blocked or barred) pattern. We show that the generating functions for these subsets are always algebraic, thereby generalising recent results of Albert and Atkinson. We also apply these techniques to the enumeration of involutions and cyclic closures.
Keywords :
Permutation class , Modular decomposition , Restricted permutation , Substitution decomposition , algebraic generating function , Simple permutation
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2008
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531283
Link To Document :
بازگشت