Title of article :
A new characterization for the m-quasiinvariants of and explicit basis for two row hook shapes
Author/Authors :
Bandlow، نويسنده , , Jason and Musiker، نويسنده , , Gregg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
25
From page :
1333
To page :
1357
Abstract :
In 2002, Feigin and Veselov [M. Feigin, A.P. Veselov, Quasiinvariants of Coxeter groups and m-harmonic polynomials, Int. Math. Res. Not. 10 (2002) 521–545] defined the space of m-quasiinvariants for any Coxeter group, building on earlier work of [O.A. Chalykh, A.P. Veselov, Commutative rings of partial differential operators and Lie algebras, Comm. Math. Phys. 126 (1990) 597–611]. While many properties of those spaces were proven in [P. Etingof, V. Ginzburg, On m-quasi-invariants of a Coxeter group, Mosc. Math. J. 3 (2002) 555–566; M. Feigin, A.P. Veselov, Quasiinvariants of Coxeter groups and m-harmonic polynomials, Int. Math. Res. Not. 10 (2002) 521–545; G. Felder, A.P. Veselov, Action of Coxeter groups on m-harmonic polynomials and Knizhnik–Zamolodchikov equations, Mosc. Math. J. 4 (2003) 1269–1291; A. Garsia, N. Wallach, The non-degeneracy of the bilinear form of m-quasi-invariants, Adv. in Appl. Math. 3 (2006) 309–359. [7]] from this definition, an explicit computation of a basis was only done in certain cases. In particular, in [M. Feigin, A.P. Veselov, Quasiinvariants of Coxeter groups and m-harmonic polynomials, Int. Math. Res. Not. 10 (2002) 521–545], bases for m-quasiinvariants were computed for dihedral groups, including S 3 , and Felder and Veselov [G. Felder, A.P. Veselov, Action of Coxeter groups on m-harmonic polynomials and Knizhnik–Zamolodchikov equations, Mosc. Math. J. 4 (2003) 1269–1291] also computed the non-symmetric m-quasiinvariants of lowest degree for general S n . In this paper, we provide a new characterization of the m-quasiinvariants of S n , and use this to provide a basis for the isotypic component indexed by the partition [ n − 1 , 1 ] . This builds on a previous paper, [J. Bandlow, G. Musiker, Quasiinvariants of S 3 , J. Combin. Theory Ser. A 109 (2005) 281–298], in which we computed a basis for S 3 via combinatorial methods.
Keywords :
Quasiinvariants , Calogero–Moser operator , Isotypic component , Invariants , symmetric group
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2008
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531342
Link To Document :
بازگشت