Title of article :
New proofs of identities of Lebesgue and Gِllnitz via tilings
Author/Authors :
Little، نويسنده , , David P. and Sellers، نويسنده , , James A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
223
To page :
231
Abstract :
In 1840, V.A. Lebesgue proved the following two series-product identities: ∑ n ⩾ 0 ( − 1 ; q ) n ( q ) n q ( n + 1 2 ) = ∏ n ⩾ 1 1 + q 2 n − 1 1 − q 2 n − 1 , ∑ n ⩾ 0 ( − q ; q ) n ( q ) n q ( n + 1 2 ) = ∏ n ⩾ 1 1 − q 4 n 1 − q n . These can be viewed as specializations of the following more general result: ∑ n ⩾ 0 ( − z ; q ) n ( q ) n q ( n + 1 2 ) = ∏ n ⩾ 1 ( 1 + q n ) ( 1 + z q 2 n − 1 ) . There are numerous combinatorial proofs of this identity, all of which describe a bijection between different types of integer partitions. Our goal is to provide a new, novel combinatorial proof that demonstrates how both sides of the above identity enumerate the same collection of “weighted Pell tilings.” In the process, we also provide a new proof of the Göllnitz identities.
Keywords :
tilings , Rogers–Ramanujan identities , Lebesgue identities , Pell numbers , G?llnitz identities
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2009
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531372
Link To Document :
بازگشت