Title of article :
Computing a pyramid partition generating function with dimer shuffling
Author/Authors :
Young، نويسنده , , Ben، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We verify a recent conjecture of Kenyon/Szendrői by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson–Thomas theory of a non-commutative resolution of the conifold singularity { x 1 x 2 − x 3 x 4 = 0 } ⊂ C 4 . The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp [Noam Elkies, Greg Kuperberg, Michael Larsen, James Propp, Alternating sign matrices and domino tilings. II, J. Algebraic Combin. 1 (3) (1992) 219–234].
Keywords :
Donaldson–Thomas theory , generating functions , Partition functions , Pyramid partitions , Dimer model , Shuffling
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A