Title of article :
Combinatorial Stokes formulas via minimal resolutions
Author/Authors :
Hanke، نويسنده , , Bernhard and Sanyal، نويسنده , , Raman and Schultz، نويسنده , , Carsten and Ziegler، نويسنده , , Günter M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Z k of order k. We then demonstrate how such a chain map induces a “ Z k -combinatorial Stokes theorem,” which in turn implies “Doldʹs theorem” that there is no equivariant map from an n-connected to an n-dimensional free Z k -complex. Thus we build a combinatorial access road to problems in combinatorics and discrete geometry that have previously been treated with methods from equivariant topology. The special case k = 2 for this is classical; it involves Tuckerʹs (1949) combinatorial lemma which implies the Borsuk–Ulam theorem, its proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula of Fan (1967), and Meunierʹs work (2006).
Keywords :
Chain maps , Resolutions of cyclic groups , Tuckerיs lemma , Doldיs theorem , Combinatorial Stokes formulas
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A