Title of article :
Punctured plane partitions and the q-deformed Knizhnik–Zamolodchikov and Hirota equations
Author/Authors :
de Gier، نويسنده , , Jan and Pyatov، نويسنده , , Pavel and Zinn-Justin، نويسنده , , Paul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We consider partial sum rules for the homogeneous limit of the solution of the q-deformed Knizhnik–Zamolodchikov equation with reflecting boundaries in the Dyck path representation of the Temperley–Lieb algebra. We show that these partial sums arise in a solution of the discrete Hirota equation, and prove that they are the generating functions of τ 2 -weighted punctured cyclically symmetric transpose complement plane partitions where τ = − ( q + q − 1 ) . In the cases of no or minimal punctures, we prove that these generating functions coincide with τ 2 -enumerations of vertically symmetric alternating sign matrices and modifications thereof.
Keywords :
Hirota equation , qKZ equation , plane partitions , alternating sign matrices
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A