Title of article :
A geometric non-existence proof of an extremal additive code
Author/Authors :
Bierbrauer، نويسنده , , Jürgen and Marcugini، نويسنده , , Stefano and Pambianco، نويسنده , , Fernanda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We use a geometric approach to solve an extremal problem in coding theory. Expressed in geometric language we show the non-existence of a system of 12 lines in PG ( 8 , 2 ) with the property that no hyperplane contains more than 5 of the lines. In coding-theoretic terms this is equivalent with the non-existence of an additive quaternary code of length 12, binary dimension 9 and minimum distance 7.
Keywords :
Additive codes , projective geometry , Secundum , Hyperplane , Minimum distance , Strength , Weight , spread
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A