Title of article :
Interval partitions and Stanley depth
Author/Authors :
Birَ، نويسنده , , Csaba and Howard، نويسنده , , David M. and Keller، نويسنده , , Mitchel T. and Trotter، نويسنده , , William T. and Young، نويسنده , , Stephen J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
475
To page :
482
Abstract :
In this paper, we answer a question posed by Herzog, Vladoiu, and Zheng. Their motivation involves a 1982 conjecture of Richard Stanley concerning what is now called the Stanley depth of a module. The question of Herzog et al., concerns partitions of the non-empty subsets of { 1 , 2 , … , n } into intervals. Specifically, given a positive integer n, they asked whether there exists a partition P ( n ) of the non-empty subsets of { 1 , 2 , … , n } into intervals, so that | B | ⩾ n / 2 for each interval [ A , B ] in P ( n ) . We answer this question in the affirmative by first embedding it in a stronger result. We then provide two alternative proofs of this second result. The two proofs use entirely different methods and yield non-isomorphic partitions. As a consequence, we establish that the Stanley depth of the ideal ( x 1 , … , x n ) ⊆ K [ x 1 , … , x n ] (K a field) is ⌈ n / 2 ⌉ .
Keywords :
Boolean lattice , Interval , Partition , Stanley depth , Monomial ideal
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2010
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531484
Link To Document :
بازگشت