Title of article :
Transversals to the convex hulls of all k-sets of discrete subsets of
Author/Authors :
Arocha، نويسنده , , J.L. and Bracho، نويسنده , , J. M. Montejano-Carrizales، نويسنده , , L. and Ramيrez Alfonsيn، نويسنده , , J.L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
197
To page :
207
Abstract :
Let k , d , λ ⩾ 1 be integers with d ⩾ λ . What is the maximum positive integer n such that every set of n points in R d has the property that the convex hulls of all k-sets have a transversal ( d − λ ) -plane? What is the minimum positive integer n such that every set of n points in general position in R d has the property that the convex hulls of all k-sets do not have a transversal ( d − λ ) -plane? In this paper, we investigate these two questions. We define a special Kneser hypergraph and, by using some topological results and the well-known λ-Helly property, we relate our second question to the chromatic number of such hypergraphs. Moreover, we establish a connection (when λ = 1 ) with Kneserʹs conjecture, first proved by Lovász. Finally, we prove a discrete flat center theorem.
Keywords :
Flat center theorem , Kneser hypergraphs , Transversal , ?-Helly property
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531559
Link To Document :
بازگشت