Title of article :
The complexity of node blocking for dags
Author/Authors :
Dariusz Dereniowski، نويسنده , , Dariusz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
We consider the following modification of annihilation games called node blocking. Given a directed graph, each vertex can be occupied by at most one token. There are two types of tokens, each player can move only tokens of his type. The players alternate their moves and the current player i selects one token of type i and moves the token along a directed edge to an unoccupied vertex. If a player cannot make a move then he loses. We consider the problem of determining the complexity of the game: given an arbitrary configuration of tokens in a planar directed acyclic graph (dag), does the current player have a winning strategy? We prove that the problem is PSPACE-complete.
Keywords :
Node blocking , Annihilation game , PSPACE-completeness
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A