Title of article :
An Erdős–Ko–Rado theorem for the derangement graph of acting on the projective line
Author/Authors :
Meagher، نويسنده , , Karen and Spiga، نويسنده , , Pablo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
532
To page :
544
Abstract :
Let G = PGL ( 2 , q ) be the projective general linear group acting on the projective line P q . A subset S of G is intersecting if for any pair of permutations π , σ in S, there is a projective point p ∈ P q such that p π = p σ . We prove that if S is intersecting, then | S | ⩽ q ( q − 1 ) . Also, we prove that the only sets S that meet this bound are the cosets of the stabilizer of a point of P q .
Keywords :
Derangement graph , independent sets , Erd?s–Ko–Rado theorem
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531585
Link To Document :
بازگشت