Title of article :
Asymptotic enumeration and limit laws for graphs of fixed genus
Author/Authors :
Chapuy، نويسنده , , Guillaume and Fusy، نويسنده , , ةric and Giménez، نويسنده , , Omer and Mohar، نويسنده , , Bojan and Noy، نويسنده , , Marc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
30
From page :
748
To page :
777
Abstract :
It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S g of genus g grows asymptotically like c ( g ) n 5 ( g − 1 ) / 2 − 1 γ n n ! where c ( g ) > 0 , and γ ≈ 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g = 0 , obtained by Giménez and Noy. logous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S g has a unique 2-connected component of linear size with high probability.
Keywords :
Graph embeddings , Enumeration , generating functions , Limit laws
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531600
Link To Document :
بازگشت