Title of article :
A new coloring theorem of Kneser graphs
Author/Authors :
Chen، نويسنده , , Peng-An، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
1062
To page :
1071
Abstract :
In 1997, Johnson, Holroyd and Stahl conjectured that the circular chromatic number of the Kneser graphs KG ( n , k ) is equal to the chromatic number of these graphs. This was proved by Simonyi and Tardos (2006) [13] and independently by Meunier (2005) [10], if χ ( KG ( n , k ) ) is even. In this paper, we propose an alternative version of Kneserʹs coloring theorem to confirm the Johnson–Holroyd–Stahl conjecture.
Keywords :
chromatic number , Octahedral Fanיs lemma , circular chromatic number , Matching admissible sequences , Kneser graphs
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531620
Link To Document :
بازگشت