Title of article :
A strong log-concavity property for measures on Boolean algebras
Author/Authors :
Kahn، نويسنده , , J. and Neiman، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
1749
To page :
1760
Abstract :
We introduce the antipodal pairs property for probability measures on finite Boolean algebras and prove that conditional versions imply strong forms of log-concavity. We give several applications of this fact, including improvements of some results of Wagner, a new proof of a theorem of Liggett stating that ultra-log-concavity of sequences is preserved by convolutions, and some progress on a well-known log-concavity conjecture of J. Mason.
Keywords :
Negative Correlation , Johnson scheme , Log-concavity , Mason?s conjecture , Antipodal pairs property
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531668
Link To Document :
بازگشت