Title of article :
Deformed Kazhdan–Lusztig elements and Macdonald polynomials
Author/Authors :
de Gier، نويسنده , , Jan and Lascoux، نويسنده , , Alain and Sorrell، نويسنده , , Mark، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
29
From page :
183
To page :
211
Abstract :
We introduce deformations of Kazhdan–Lusztig elements and specialised non-symmetric Macdonald polynomials, both of which form a distinguished basis of the polynomial representation of a maximal parabolic subalgebra of the Hecke algebra. We give explicit integral formula for these polynomials, and explicitly describe the transition matrices between classes of polynomials. We further develop a combinatorial interpretation of homogeneous evaluations using an expansion in terms of Schubert polynomials in the deformation parameters.
Keywords :
Hecke algebra , Kazhdan Lusztig basis , Macdonald polynomials , plane partitions
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2012
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531729
Link To Document :
بازگشت