Title of article :
Linear extension of the Erdős–Heilbronn conjecture
Author/Authors :
Sun، نويسنده , , Zhiwei and Zhao، نويسنده , , Li-Lu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
18
From page :
364
To page :
381
Abstract :
The famous Erdős–Heilbronn conjecture plays an important role in the development of additive combinatorial number theory. In 2007 Z.W. Sun made the following further conjecture (which is the linear extension of the Erdős–Heilbronn conjecture): For any finite subset A of a field F and nonzero elements a 1 , … , a n of F, we have | { a 1 x 1 + ⋯ + a n x n : x 1 , … , x n ∈ A , and x i ≠ x j if i ≠ j } | ⩾ min { p ( F ) − δ , n ( | A | − n ) + 1 } , where the additive order p ( F ) of the multiplicative identity of F is different from n + 1 , and δ ∈ { 0 , 1 } takes the value 1 if and only if n = 2 and a 1 + a 2 = 0 . In this paper we prove this conjecture of Sun when p ( F ) ⩾ n ( 3 n − 5 ) / 2 . We also obtain a sharp lower bound for the cardinality of the restricted sumset { x 1 + ⋯ + x n : x 1 ∈ A 1 , … , x n ∈ A n , and P ( x 1 , … , x n ) ≠ 0 } , where A 1 , … , A n are finite subsets of a field F and P ( x 1 , … , x n ) is a general polynomial over F.
Keywords :
Erd?s–Heilbronn conjecture , linear extension , Combinatorial Nullstellensatz , Value sets of polynomials over a field
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2012
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531739
Link To Document :
بازگشت