Title of article :
Monochromatic progressions in random colorings
Author/Authors :
Vijay، نويسنده , , Sujith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Let N + ( k ) = 2 k / 2 k 3 / 2 f ( k ) and N − ( k ) = 2 k / 2 k 1 / 2 g ( k ) where f ( k ) → ∞ and g ( k ) → 0 arbitrarily slowly as k → ∞ . We show that the probability of a random 2-coloring of { 1 , 2 , … , N + ( k ) } containing a monochromatic k-term arithmetic progression approaches 1, and the probability of a random 2-coloring of { 1 , 2 , … , N − ( k ) } containing a monochromatic k-term arithmetic progression approaches 0, as k → ∞ . This improves an upper bound due to Brown, who had established an analogous result for N + ( k ) = 2 k log k f ( k ) .
Keywords :
arithmetic progressions , hypergraph coloring , Van der Waerden?s theorem
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A