Title of article :
The algebraic combinatorics of snakes
Author/Authors :
Josuat-Vergès، نويسنده , , Matthieu and Novelli، نويسنده , , Jean-Christophe and Thibon، نويسنده , , Jean-Yves، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
26
From page :
1613
To page :
1638
Abstract :
Snakes are analogues of alternating permutations defined for any Coxeter group. We study these objects from the point of view of combinatorial Hopf algebras, such as noncommutative symmetric functions and their generalizations. The main purpose is to show that several properties of the generating functions of snakes, such as differential equations or closed form as trigonometric functions, can be lifted at the level of noncommutative symmetric functions or free quasi-symmetric functions. The results take the form of algebraic identities for type B noncommutative symmetric functions, noncommutative supersymmetric functions and colored free quasi-symmetric functions.
Keywords :
Noncommutative Symmetric Functions , snakes , Euler numbers
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2012
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531815
Link To Document :
بازگشت