Title of article :
The down operator and expansions of near rectangular k-Schur functions
Author/Authors :
Berg، نويسنده , , Chris and Saliola، نويسنده , , Franco and Serrano، نويسنده , , Luis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
14
From page :
623
To page :
636
Abstract :
We prove that the Lam–Shimozono “down operator” on the affine Weyl group induces a derivation of the affine Fomin–Stanley subalgebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of non-commutative k-Schur functions of “near rectangles” in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients.
Keywords :
k-Cores , symmetric functions , Affine Schubert calculus , Dual graded graphs , k-Schur functions , Affine nilCoxeter algebra
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2013
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531871
Link To Document :
بازگشت