Title of article :
Laurent polynomials, Eulerian numbers, and Bernsteinʹs theorem
Author/Authors :
Liu، نويسنده , , Ricky Ini، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
244
To page :
250
Abstract :
Erman, Smith, and Várilly-Alvarado (2011) showed that the expected number of doubly monic Laurent polynomials f ( z ) = z − m + a − m + 1 z − m + 1 + ⋯ + a n − 1 z n − 1 + z n whose first m + n − 1 powers have vanishing constant term is the Eulerian number 〈 m + n − 1 m − 1 〉 , as well as a more refined result about sparse Laurent polynomials. We give an alternate proof of these results using Bernsteinʹs theorem that clarifies the connection between these objects. In the process, we show that a refinement of Eulerian numbers gives a combinatorial interpretation for volumes of certain rational hyperplane sections of the hypercube.
Keywords :
Eulerian number , Bernsteinיs theorem , Hypersimplex
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532009
Link To Document :
بازگشت