Title of article :
Decompositions of complete uniform hypergraphs into Hamilton Berge cycles
Author/Authors :
Kühn، نويسنده , , Daniela and Osthus، نويسنده , , Deryk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
128
To page :
135
Abstract :
In 1973 Bermond, Germa, Heydemann and Sotteau conjectured that if n divides ( n k ) , then the complete k-uniform hypergraph on n vertices has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of an alternating sequence v 1 , e 1 , v 2 , … , v n , e n of distinct vertices v i and distinct edges e i so that each e i contains v i and v i + 1 . So the divisibility condition is clearly necessary. In this note, we prove that the conjecture holds whenever k ≥ 4 and n ≥ 30 . Our argument is based on the Kruskal–Katona theorem. The case when k = 3 was already solved by Verrall, building on results of Bermond.
Keywords :
Hypergraphs , Hamilton decompositions , Hamilton cycles , Berge cycles
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532033
Link To Document :
بازگشت