Title of article :
On crown-free families of subsets
Author/Authors :
Lu، نويسنده , , Linyuan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
16
From page :
216
To page :
231
Abstract :
The crown O 2 t is a height-2 poset whose Hasse diagram is a cycle of length 2t. A family F of subsets of [ n ] : = { 1 , 2 … , n } is O 2 t -free if O 2 t is not a weak subposet of ( F , ⊆ ) . Let La ( n , O 2 t ) be the largest size of O 2 t -free families of subsets of [ n ] . De Bonis–Katona–Swanepoel proved La ( n , O 4 ) = ( n ⌊ n 2 ⌋ ) + ( n ⌈ n 2 ⌉ ) . Griggs and Lu proved that La ( n , O 2 t ) = ( 1 + o ( 1 ) ) ( n ⌊ n 2 ⌋ ) for all even t ≥ 4 . In this paper, we prove La ( n , O 2 t ) = ( 1 + o ( 1 ) ) ( n ⌊ n 2 ⌋ ) for all odd t ≥ 7 .
Keywords :
POSET , Crown-free families , k-Partite representation , Lubell function , Boolean lattice
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2014
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1532038
Link To Document :
بازگشت