Title of article :
An extremal problem on crossing vectors
Author/Authors :
Laso?، نويسنده , , Micha? and Micek، نويسنده , , Piotr and Streib، نويسنده , , Noah and Trotter، نويسنده , , William T. and Walczak، نويسنده , , Bartosz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
For positive integers w and k, two vectors A and B from Z w are called k-crossing if there are two coordinates i and j such that A [ i ] − B [ i ] ≥ k and B [ j ] − A [ j ] ≥ k . What is the maximum size of a family of pairwise 1-crossing and pairwise non-k-crossing vectors in Z w ? We state a conjecture that the answer is k w − 1 . We prove the conjecture for w ≤ 3 and provide weaker upper bounds for w ≥ 4 . Also, for all k and w, we construct several quite different examples of families of desired size k w − 1 . This research is motivated by a natural question concerning the width of the lattice of maximum antichains of a partially ordered set.
Keywords :
Crossing vectors , extremal problems , Maximum antichains
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A